Back to Search
Start Over
Ten-Eleven Translocation Proteins Modulate the Response to Environmental Stress in Mice
- Source :
- Cell Reports, Vol 25, Iss 11, Pp 3194-3203.e4 (2018)
- Publication Year :
- 2018
- Publisher :
- Elsevier, 2018.
-
Abstract
- Summary: 5-hydroxymethylcytosine (5hmC) is enriched in brain and has been recognized as an important DNA modification. However, the roles of 5hmC and its writers, ten-eleven translocation (Tet) proteins, in stress-induced response have yet to be elucidated. Here, we show that chronic restraint stress (CRS) induced depression-like behavior in mice and resulted in a 5hmC reduction in prefrontal cortex (PFC). We found that loss of Tet1 (Tet1 KO) led to resistance to CRS, whereas loss of Tet2 (Tet2 KO) increased the susceptibility of mice to CRS. Genome-wide 5hmC profiling identified the phenotype-associated stress-induced dynamically hydroxymethylated loci (PA-SI-DhMLs), which are strongly enriched with hypoxia-induced factor (HIF) binding motifs. We demonstrated the physical interaction between TET1 and HIF1α induced by CRS and revealed that the increased HIF1α binding under CRS is associated with SI-DhMLs. These results suggest that TET1 could regulate stress-induced response by interacting with HIF1α. : The roles of 5-hydroxymethylcytosine (5hmC) and its writers, Tet proteins, in stress-induced response remain unclear. Cheng et al. show that Tet1 knockout mice exhibit resistance, whereas Tet2 knockout mice have increased susceptibility to stress. Biochemical and genome-wide analyses suggest that Tet1 could regulate stress-induced response by interacting with Hif1α. Keywords: 5-hydroxymethylcytosine, depression, prefrontal cortex, stress, Tet protein
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 22111247
- Volume :
- 25
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.bacd9b9dda446f0a8afc190393a2c26
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.celrep.2018.11.061