Back to Search Start Over

Improved YOLOv5m model based on Swin Transformer, K-means++, and Efficient Intersection over Union (EIoU) loss function for cocoa tree (Theobroma cacao) disease detection

Authors :
Benedicta Nana Esi Nyarko
Wu Bin Wu
Zhou Jinzhi Zhou
Mwanaharusi Mohd Juma Mohd
Source :
Journal of Plant Protection Research, Vol vol. 64, Iss No 3, Pp 265-274 (2024)
Publication Year :
2024
Publisher :
Polish Academy of Sciences, 2024.

Abstract

The cocoa tree is prone to diverse diseases such as stem borer, stem canker, swollen shot, and root rot disease which impedes high yield. Early disease detection is a critical component of diverse management processes that are implemented throughout the life cycle of cocoa plants. Consequently, several studies on the application of detection techniques to recognize diseases have been proposed by several researchers. This study proposes the YOLOv5m network for cocoa tree disease detection. The development of cocoa disease detection systems will aid farmers in early identification prompt response, and efficient management of related cocoa tree diseases which will ultimately increase yield and sustainability. To improve the performance of the YOLOv5m network, a Swin Transformer (Swin-T) was added to the backbone network to improve cocoa tree disease detection accuracy. By obtaining global information, the K-means++ algorithm was added to modify the choice of initial clustering locations, and Efficient Intersection over Union Loss (EIoU) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher precision of the YOLOv5m network. The experimental assessment outcome of this study showed that the proposed method YOLOv5m (Swin-T, K-means++, EIoU) achieved 96% precision, mAP of 92%, and recall of 94%. Compared to the original YOLOv5m, precision improved by 5%, mAP improved by 6%, and recall by 5%. Comparing the proposed method to the conventional YOLOv5m, the latter showed improved performance and better accuracy with a high detection speed and compactness. This improvement offers a useful and effective method for detecting diseases related to cocoa trees.

Details

Language :
English
ISSN :
14274345 and 1899007X
Volume :
. 64
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Journal of Plant Protection Research
Publication Type :
Academic Journal
Accession number :
edsdoj.ba135bf9304f4cf199ab53f8de89750f
Document Type :
article
Full Text :
https://doi.org/10.24425/jppr.2024.151253