Back to Search Start Over

Suppression of virulence factors of uropathogenic Escherichia coli by Trans-resveratrol and design of nanoemulgel

Suppression of virulence factors of uropathogenic Escherichia coli by Trans-resveratrol and design of nanoemulgel

Authors :
Dalia Saad ElFeky
Abeer Ahmed Kassem
Mona A. Moustafa
Hanan Assiri
Areej M. El-Mahdy
Source :
BMC Microbiology, Vol 24, Iss 1, Pp 1-19 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Development of multidrug resistance in Uropathogenic Escherichia coli (UPEC) makes treatment of Urinary Tract Infections (UTIs) a major challenge. This study was conducted to investigate the effect of trans-resveratrol (t-RSV) at a subinhibitory concentration (sub-MIC-t-RSV) on phenotypic and genotypic expression of virulence factors of clinical isolates of UPEC and develop a nanoformulation of t-RSV. Fifty-five clinical UPEC strains were investigated for the presence of virulence factors by phenotypic methods and PCR detection of virulence genes. The effect of sub-MIC-t-RSV was studied on the phenotypic and genotypic expression of virulence factors. t-RSV-loaded nanoemulgel formulation was prepared and characterized. Results Out of the 55 tested isolates, 50.9% were biofilm producers, 23.6% showed both mannose-sensitive and mannose-resistant hemagglutination, 21.8% were serum-resistant, 18.2% were hemolysin producers, while 36.4% showed cytotoxic effect on HEp-2 cells. A total of 25.5% of the isolates harbor one or more of hly-A, cnf-1 and papC genes, while 54.5% were positive for one or more of fimH, iss and BssS genes. A concentration of 100 µg/mL of t-RSV effectively downregulates the phenotypic and genotypic expression of the virulence factors in positive isolates. A stable t-RSV-nanaoemulgel with droplet size of 180.3 nm and Zetapotential of -46.9 mV was obtained. Conclusion The study proves the effective role of t-RSV as an antivirulence agent against clinical UPEC isolates in vitro and develops a stable t-RSV-nanoemulgel formulation to be assessed in vivo. The promising antibacterial and antivirulence properties of t-RSV place this natural compound to be a better alternative in the treatment of persistent UTIs.

Details

Language :
English
ISSN :
14712180
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.b9ebce53f8b44946900dc302e611a4b2
Document Type :
article
Full Text :
https://doi.org/10.1186/s12866-024-03538-4