Back to Search Start Over

Proton‐Coupled Electron Transfer on Cu2O/Ti3C2Tx MXene for Propane (C3H8) Synthesis from Electrochemical CO2 Reduction

Authors :
Jun Young Kim
Won Tae Hong
Thi Kim Cuong Phu
Seong Chan Cho
Byeongkyu Kim
Unbeom Baeck
Hyung‐Suk Oh
Jai Hyun Koh
Xu Yu
Chang Hyuck Choi
Jongwook Park
Sang Uck Lee
Chan‐Hwa Chung
Jung Kyu Kim
Source :
Advanced Science, Vol 11, Iss 39, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Electrochemical CO2 reduction reaction (CO2RR) to produce value‐added multi‐carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high‐value chemicals like high‐energy‐density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored‐Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in‐situ attenuated total reflection‐Fourier transform infrared spectroscopy (ATR‐FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene‐based hybrid catalyst facilitates multi‐carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
39
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.b9aa8c896d4546bb99ef558b25793bc7
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202405154