Back to Search Start Over

Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases.

Authors :
Marina Tiemi Shio
Stephanie C Eisenbarth
Myriam Savaria
Adrien F Vinet
Marie-Josée Bellemare
Kenneth W Harder
Fayyaz S Sutterwala
D Scott Bohle
Albert Descoteaux
Richard A Flavell
Martin Olivier
Source :
PLoS Pathogens, Vol 5, Iss 8, p e1000559 (2009)
Publication Year :
2009
Publisher :
Public Library of Science (PLoS), 2009.

Abstract

The intraerythrocytic parasite Plasmodium -- the causative agent of malaria -- produces an inorganic crystal called hemozoin (Hz) during the heme detoxification process, which is released into the circulation during erythrocyte lysis. Hz is rapidly ingested by phagocytes and induces the production of several pro-inflammatory mediators such as interleukin-1beta (IL-1beta). However, the mechanism regulating Hz recognition and IL-1beta maturation has not been identified. Here, we show that Hz induces IL-1beta production. Using knockout mice, we showed that Hz-induced IL-1beta and inflammation are dependent on NOD-like receptor containing pyrin domain 3 (NLRP3), ASC and caspase-1, but not NLRC4 (NLR containing CARD domain). Furthermore, the absence of NLRP3 or IL-1beta augmented survival to malaria caused by P. chabaudi adami DS. Although much has been discovered regarding the NLRP3 inflammasome induction, the mechanism whereby this intracellular multimolecular complex is activated remains unclear. We further demonstrate, using pharmacological and genetic intervention, that the tyrosine kinases Syk and Lyn play a critical role in activation of this inflammasome. These findings not only identify one way by which the immune system is alerted to malarial infection but also are one of the first to suggest a role for tyrosine kinase signaling pathways in regulation of the NLRP3 inflammasome.

Details

Language :
English
ISSN :
15537366 and 15537374
Volume :
5
Issue :
8
Database :
Directory of Open Access Journals
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
edsdoj.b98814ba35b5496b9d4c9d2461d8a623
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.ppat.1000559