Back to Search
Start Over
Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the (G′G,1G) $( \frac{G'}{G},\frac{1}{G} ) $-expansion method
- Source :
- Advances in Difference Equations, Vol 2018, Iss 1, Pp 1-15 (2018)
- Publication Year :
- 2018
- Publisher :
- SpringerOpen, 2018.
-
Abstract
- Abstract In this paper, the two variables (G′G,1G) $( \frac{G'}{G},\frac{1}{G} ) $-expansion method is applied to obtain new exact solutions with parameters of higher-dimensional nonlinear time-fractional differential equations (NTFDEs) in the sense of the conformable fractional derivative. To clarify the veracity of this method, it is implemented in nonlinear (2+1) $(2+1)$-dimensional time-fractional biological population (BP) model and nonlinear (3+1) $(3+1)$-dimensional KdV–Zakharov–Kuznetsov (KdV–ZK) equation with time-fractional derivative. When the parameters take some special values, the solitary and periodic solutions are obtained from the hyperbolic and trigonometric function solutions.
- Subjects :
- ( G ′ G , 1 G ) $( \frac{G'}{G}, \frac{1}{G})$ -expansion method
Conformable fractional derivative
Exact solutions
( 2 + 1 ) $(2+1)$ -dimensional time-fractional biological population model
( 3 + 1 ) $(3+1)$ -dimensional time-fractional KdV–Zakharov–Kuznetsov equation
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 16871847
- Volume :
- 2018
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Advances in Difference Equations
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b97e86f83c71489d85657e8b7c7a5bf3
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13662-018-1814-5