Back to Search Start Over

Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the (G′G,1G) $( \frac{G'}{G},\frac{1}{G} ) $-expansion method

Authors :
Altaf A. Al-Shawba
Farah A. Abdullah
Khaled A. Gepreel
Amirah Azmi
Source :
Advances in Difference Equations, Vol 2018, Iss 1, Pp 1-15 (2018)
Publication Year :
2018
Publisher :
SpringerOpen, 2018.

Abstract

Abstract In this paper, the two variables (G′G,1G) $( \frac{G'}{G},\frac{1}{G} ) $-expansion method is applied to obtain new exact solutions with parameters of higher-dimensional nonlinear time-fractional differential equations (NTFDEs) in the sense of the conformable fractional derivative. To clarify the veracity of this method, it is implemented in nonlinear (2+1) $(2+1)$-dimensional time-fractional biological population (BP) model and nonlinear (3+1) $(3+1)$-dimensional KdV–Zakharov–Kuznetsov (KdV–ZK) equation with time-fractional derivative. When the parameters take some special values, the solitary and periodic solutions are obtained from the hyperbolic and trigonometric function solutions.

Details

Language :
English
ISSN :
16871847
Volume :
2018
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Advances in Difference Equations
Publication Type :
Academic Journal
Accession number :
edsdoj.b97e86f83c71489d85657e8b7c7a5bf3
Document Type :
article
Full Text :
https://doi.org/10.1186/s13662-018-1814-5