Back to Search Start Over

IMAGE LABELING FOR LIDAR INTENSITY IMAGE USING K-NN OF FEATURE OBTAINED BY CONVOLUTIONAL NEURAL NETWORK

Authors :
M. Umemura
K. Hotta
H. Nonaka
K. Oda
Source :
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLI-B3, Pp 931-935 (2016)
Publication Year :
2016
Publisher :
Copernicus Publications, 2016.

Abstract

We propose an image labeling method for LIDAR intensity image obtained by Mobile Mapping System (MMS) using K-Nearest Neighbor (KNN) of feature obtained by Convolutional Neural Network (CNN). Image labeling assigns labels (e.g., road, cross-walk and road shoulder) to semantic regions in an image. Since CNN is effective for various image recognition tasks, we try to use the feature of CNN (Caffenet) pre-trained by ImageNet. We use 4,096-dimensional feature at fc7 layer in the Caffenet as the descriptor of a region because the feature at fc7 layer has effective information for object classification. We extract the feature by the Caffenet from regions cropped from images. Since the similarity between features reflects the similarity of contents of regions, we can select top K similar regions cropped from training samples with a test region. Since regions in training images have manually-annotated ground truth labels, we vote the labels attached to top K similar regions to the test region. The class label with the maximum vote is assigned to each pixel in the test image. In experiments, we use 36 LIDAR intensity images with ground truth labels. We divide 36 images into training (28 images) and test sets (8 images). We use class average accuracy and pixel-wise accuracy as evaluation measures. Our method was able to assign the same label as human beings in 97.8% of the pixels in test LIDAR intensity images.

Details

Language :
English
ISSN :
16821750 and 21949034
Volume :
XLI-B3
Database :
Directory of Open Access Journals
Journal :
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.b90f76500fc4e818107c579801a91e3
Document Type :
article
Full Text :
https://doi.org/10.5194/isprs-archives-XLI-B3-931-2016