Back to Search
Start Over
IMAGE LABELING FOR LIDAR INTENSITY IMAGE USING K-NN OF FEATURE OBTAINED BY CONVOLUTIONAL NEURAL NETWORK
- Source :
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLI-B3, Pp 931-935 (2016)
- Publication Year :
- 2016
- Publisher :
- Copernicus Publications, 2016.
-
Abstract
- We propose an image labeling method for LIDAR intensity image obtained by Mobile Mapping System (MMS) using K-Nearest Neighbor (KNN) of feature obtained by Convolutional Neural Network (CNN). Image labeling assigns labels (e.g., road, cross-walk and road shoulder) to semantic regions in an image. Since CNN is effective for various image recognition tasks, we try to use the feature of CNN (Caffenet) pre-trained by ImageNet. We use 4,096-dimensional feature at fc7 layer in the Caffenet as the descriptor of a region because the feature at fc7 layer has effective information for object classification. We extract the feature by the Caffenet from regions cropped from images. Since the similarity between features reflects the similarity of contents of regions, we can select top K similar regions cropped from training samples with a test region. Since regions in training images have manually-annotated ground truth labels, we vote the labels attached to top K similar regions to the test region. The class label with the maximum vote is assigned to each pixel in the test image. In experiments, we use 36 LIDAR intensity images with ground truth labels. We divide 36 images into training (28 images) and test sets (8 images). We use class average accuracy and pixel-wise accuracy as evaluation measures. Our method was able to assign the same label as human beings in 97.8% of the pixels in test LIDAR intensity images.
Details
- Language :
- English
- ISSN :
- 16821750 and 21949034
- Volume :
- XLI-B3
- Database :
- Directory of Open Access Journals
- Journal :
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b90f76500fc4e818107c579801a91e3
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/isprs-archives-XLI-B3-931-2016