Back to Search Start Over

Exploring the Photodynamic Properties of Two Antiproliferative Benzodiazopyrrole Derivatives

Authors :
Concetta Imperatore
Mohammadhassan Valadan
Luciana Tartaglione
Marco Persico
Anna Ramunno
Marialuisa Menna
Marcello Casertano
Carmela Dell’Aversano
Manjot Singh
Maria Luisa d’Aulisio Garigliota
Francesco Bajardi
Elena Morelli
Caterina Fattorusso
Carlo Altucci
Michela Varra
Source :
International Journal of Molecular Sciences, Vol 21, Iss 4, p 1246 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The identification of molecules whose biological activity can be properly modulated by light is a promising therapeutic approach aimed to improve drug selectivity and efficacy on the molecular target and to limit the side effects compared to traditional drugs. Recently, two photo-switchable diastereomeric benzodiazopyrrole derivatives 1RR and 1RS have been reported as microtubules targeting agents (MTAs) on human colorectal carcinoma p53 null cell line (HCT 116 p53-/-). Their IC50 was enhanced upon Light Emitting Diode (LED) irradiation at 435 nm and was related to their cis form. Here we have investigated the photo-responsive behavior of the acid derivatives of 1RR and 1RS, namely, d1RR and d1RS, in phosphate buffer solutions at different pH. The comparison of the UV spectra, acquired before and after LED irradiation, indicated that the trans→cis conversion of d1RR and d1RS is affected by the degree of ionization. The apparent rate constants were calculated from the kinetic data by means of fast UV spectroscopy and the conformers of the putative ionic species present in solution (pH range: 5.7−8.0) were modelled. Taken together, our experimental and theoretical results suggest that the photo-conversions of trans d1RR/d1RS into the corresponding cis forms and the thermal decay of cis d1RR/d1RS are dependent on the presence of diazonium form of d1RR/d1RS. Finally, a photo-reaction was detected only for d1RR after prolonged LED irradiation in acidic medium, and the resulting product was characterized by means of Liquid Chromatography coupled to High resolution Mass Spectrometry (LC-HRMS) and Nuclear Magnetic Resonance (NMR) spectroscopy.

Details

Language :
English
ISSN :
14220067
Volume :
21
Issue :
4
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.b8fe83a37cec459b9eb3eb086af582b6
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms21041246