Back to Search Start Over

High-throughput homogenous assay for the direct detection of Listeria monocytogenes DNA

Authors :
Cheryl M. Armstrong
Joseph A. Capobianco
Sarah Nguyen
Manita Guragain
Yanhong Liu
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The Amplified Luminescent Proximity Homogenous Assay-linked Immunosorbent Assay (AlphaLISA) is known for detecting various protein targets; however, its ability to detect nucleic acid sequences is not well established. Here, the capabilities of the AlphaLISA technology were expanded to include direct detection of DNA (aka: oligo-Alpha) and was applied to the detection of Listeria monocytogenes. Parameters were defined that allowed the newly developed oligo-Alpha to differentiate L. monocytogenes from other Listeria species through the use of only a single nucleotide polymorphism within the 16S rDNA region. Investigations into the applicability of this assay with different matrices demonstrated its utility in both milk and juice. One remarkable feature of the oligo-Alpha is that greater sensitivity could be achieved through the use of multiple acceptor oligos compared to only a single acceptor oligo, even when only a single donor oligo was employed. Additional acceptor oligos were easily incorporated into the assay and a tenfold change in the detection limit was readily achieved, with detection limits of 250 attomole of target being recorded. In summary, replacement of antibodies with oligonucleotides allows us to take advantage of genotypic difference(s), which both expands its repertoire of biological markers and furthers its use as a diagnostic tool.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b8f656f12554f69a07d1d44898f7afb
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-56911-8