Back to Search Start Over

Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner.

Authors :
Massimo Silvetti
Eliana Vassena
Elger Abrahamse
Tom Verguts
Source :
PLoS Computational Biology, Vol 14, Iss 8, p e1006370 (2018)
Publication Year :
2018
Publisher :
Public Library of Science (PLoS), 2018.

Abstract

Optimal decision-making is based on integrating information from several dimensions of decisional space (e.g., reward expectation, cost estimation, effort exertion). Despite considerable empirical and theoretical efforts, the computational and neural bases of such multidimensional integration have remained largely elusive. Here we propose that the current theoretical stalemate may be broken by considering the computational properties of a cortical-subcortical circuit involving the dorsal anterior cingulate cortex (dACC) and the brainstem neuromodulatory nuclei: ventral tegmental area (VTA) and locus coeruleus (LC). From this perspective, the dACC optimizes decisions about stimuli and actions, and using the same computational machinery, it also modulates cortical functions (meta-learning), via neuromodulatory control (VTA and LC). We implemented this theory in a novel neuro-computational model-the Reinforcement Meta Learner (RML). We outline how the RML captures critical empirical findings from an unprecedented range of theoretical domains, and parsimoniously integrates various previous proposals on dACC functioning.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
1553734X and 15537358
Volume :
14
Issue :
8
Database :
Directory of Open Access Journals
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.b8e6426403ac45b7b2d2306803d4ccde
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pcbi.1006370