Back to Search
Start Over
Fine Tuning of Reactive Oxygen Species Homeostasis Regulates Primed Immune Responses in Arabidopsis
- Source :
- Molecular Plant-Microbe Interactions, Vol 26, Iss 11, Pp 1334-1344 (2013)
- Publication Year :
- 2013
- Publisher :
- The American Phytopathological Society, 2013.
-
Abstract
- Selected stimuli can prime the plant immune system for a faster and stronger defense reaction to pathogen attack. Pretreatment of Arabidopsis with the chemical agent β-aminobutyric acid (BABA) augmented H2O2 and callose production after induction with the pathogen-associated molecular pattern (PAMP) chitosan, or inoculation with the necrotrophic fungus Plectosphaerella cucumerina. However, BABA failed to prime H2O2 and callose production after challenge with the bacterial PAMP Flg22. Analysis of Arabidopsis mutants in reactive oxygen species (ROS) production (rbohD) or ROS scavenging (pad2, vtc1, and cat2) suggested a regulatory role for ROS homeostasis in priming of chitosan- and P. cucumerina-inducible callose and ROS. Moreover, rbohD and pad2 were both impaired in BABA-induced resistance against P. cucumerina. Gene expression analysis revealed direct induction of NADPH/respiratory burst oxidase protein D (RBOHD), γ-glutamylcysteine synthetase 1 (GSH1), and vitamin C defective 1 (VTC1) genes after BABA treatment. Conversely, ascorbate peroxidase 1 (APX1) transcription was repressed by BABA after challenge with chitosan or P. cucumerina, probably to provide a more oxidized environment in the cell and facilitate augmented ROS accumulation. Measuring ratios between reduced and oxidized glutathione confirmed that augmented defense expression in primed plants is associated with a more oxidized cellular status. Together, our data indicate that an altered ROS equilibrium is required for augmented defense expression in primed plants.
- Subjects :
- Microbiology
QR1-502
Botany
QK1-989
Subjects
Details
- Language :
- English
- ISSN :
- 19437706 and 08940282
- Volume :
- 26
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Molecular Plant-Microbe Interactions
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b89ff42eafd44f9cb6bc050bdbea3be7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1094/MPMI-04-13-0117-R