Back to Search Start Over

Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy

Authors :
Hiroshi Ueno
Atsumi Shimada
Shunsuke Suemitsu
Shinji Murakami
Naoya Kitamura
Kenta Wani
Yu Takahashi
Yosuke Matsumoto
Motoi Okamoto
Takeshi Ishihara
Source :
IBRO Reports, Vol 9, Iss , Pp 102-114 (2020)
Publication Year :
2020
Publisher :
Elsevier, 2020.

Abstract

Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear.Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules.Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production.

Details

Language :
English
ISSN :
24518301
Volume :
9
Issue :
102-114
Database :
Directory of Open Access Journals
Journal :
IBRO Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b88e946a61f548ccaeb1f18e7d904acf
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ibror.2020.07.007