Back to Search Start Over

Chemical Synthesis and Characterization of Pd/SiO2: The Effect of Chemical Reagent

Authors :
Aram L. Bugaev
Vladimir A. Polyakov
Andrei A. Tereshchenko
Ashura N. Isaeva
Alina A. Skorynina
Elizaveta G. Kamyshova
Andriy P. Budnyk
Tatiana A. Lastovina
Alexander V. Soldatov
Source :
Metals, Vol 8, Iss 2, p 135 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

The size and shape distribution of metal nanoparticles (NPs) are important parameters that need to be tuned in order to achieve desired properties of materials for practical applications. In the current work, we present the synthesis of palladium NPs supported on silica by three different methods, applying reduction by sodium borohydride, hydrazine vapors, and polyethylene glycol (PEG). The synthesized materials were characterized by X-ray diffraction, X-ray fluorescence, transmission electron microscopy, surface area and porosity measurements, and thermogravimetric analysis. Similar nanoparticle sizes with narrow size distribution centered at 8 nm were obtained after reduction by sodium borohydride and hydrazine vapors, whereas the smallest particle size of about 4.8 nm was obtained after reduction by PEG. The effect of modification of the initial palladium chloride compound by ammonium hydroxide was found to lead to the formation of larger particles with average size of 15 nm and broader size distribution. In addition, the process of the reduction of palladium by PEG at different reduction stages was monitored by UV-Vis spectroscopy. CO-stripping voltammetry showed that reduction in hydrazine and in PEG allowed the preparation of Pd NPs with high electrochemically-active surface area. Such NPs are promising materials for electrocatalysis.

Details

Language :
English
ISSN :
20754701
Volume :
8
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Metals
Publication Type :
Academic Journal
Accession number :
edsdoj.b86d1ced3e00470a8390ec506f471e18
Document Type :
article
Full Text :
https://doi.org/10.3390/met8020135