Back to Search Start Over

Key factors in developing controlled closed ecosystems for lunar missions

Authors :
José María Ortega-Hernandez
Dan Qiu
Jorge Pla-García
Zhang Yuanxun
Jesús Martinez-Frias
Xiao Long
Eva Sanchez-Rodriguez
Juan Hernandez-Narvaez
Gengxin Xie
Fernando Alberquilla
Source :
Resources, Environment and Sustainability, Vol 16, Iss , Pp 100160- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

The utilization of in-situ resources will be crucial for the survival of astronauts in space. Therefore, plants and crops will be important for humans in space as they serve as food, provide oxygen, and remove carbon dioxide, enhancing habitability. The aim of this research is to explore the growth of crops on celestial bodies prior to human arrival. The paper outlines the creation of a novel capsule by Green Moon Project (GMP) designed to meet essential criteria for monitoring and enhancing crop cultivation on the lunar terrain, tackling key obstacles such as self-propagation, fluctuating light patterns, water provision, and monitoring germination and growth stages. The Center of Space Exploration (hereafter COSE) managed to sprout the first seed on another celestial body during the Chang’e 4 mission on the Moon in January 2019. This achievement means an important step in space agriculture and widens the biological research of crops that will sustain future crewed missions and human bases in space. Space farming requires greater understanding if humans are to survive in space without constant contact from Earth and that is why GMP goals are aligned COSE’s. Therefore, GMP and COSE work in synergy to boost the research of space farming, future crops, habitability, and close controlled environmental systems. Due to the similarities between both projects, both teams decided to join efforts and cooperate in future space missions. To provide scientific support and technical solutions for future long-term crewed exploration missions, it is mandatory to conduct ground verification experiments of controllable extraterrestrial ecosystems.

Details

Language :
English
ISSN :
26669161
Volume :
16
Issue :
100160-
Database :
Directory of Open Access Journals
Journal :
Resources, Environment and Sustainability
Publication Type :
Academic Journal
Accession number :
edsdoj.b86be5ed67d44678bba52c5112a570bb
Document Type :
article
Full Text :
https://doi.org/10.1016/j.resenv.2024.100160