Back to Search Start Over

Facile synthesis of amorphous zirconium phosphate graphitic carbon nitride composite and its high performance for photocatalytic degradation of indigo carmine dye in water

Authors :
Ayyob M. Bakry
Waleed M. Alamier
M. Samy El-Shall
Fathi S. Awad
Source :
Journal of Materials Research and Technology, Vol 20, Iss , Pp 1456-1469 (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

In this work, we reported the synthesis of amorphous zirconium phosphate graphitic carbon nitride (a-ZrP/g-C3N4) composite via the formation of amorphous zirconium phosphate (a-ZrP) onto the surface of graphitic carbon nitride (g-C3N4) nanosheets. The prepared a-ZrP-g-C3N4 composite was characterized by different analytical techniques. The FTIR, XRD, TEM, SEM, XPS, and PET surface area confirmed the successful preparation of a-ZrP-g-C3N4 nanocomposite with a high surface area (60 m2/g) and pore width less than 2 nm. The a-ZrP-g-C3N4 nanocomposite showed superior photocatalytic efficiency for the degradation of indigo carmine (IC) dye compared to the (g-C3N4) nanosheets. At room temperature and normal pH, 5 mg of the photocatalyst can degrade about 100% of 50 mL of an aqueous solution containing 10 ppm IC dye within 30 min under UV light irradiation (4 W at 356 nm). The photodegradation kinetics fitted well with the first-order kinetic module. The high photodegradation efficiency was attributed to the unique structure of the prepared nanocomposite since a-ZrP crosslinks g-C3N4 nanosheets in mesoporous structure which generate multichannel photocatalytic sites in addition to the inhibition of photogenerated electrons (e–) and holes (h+) recombination. The results of reusability revealed that the nanocomposite can be used several times without a significant change in its photocatalytic activity. Owing to the ease of synthetic strategy, cost-effective starting materials, and high photodegradation efficiency, a-ZrP/g-C3N4 composite has the potential to be a promising photocatalyst to remediate water-containing indigo carmine dye.

Details

Language :
English
ISSN :
22387854
Volume :
20
Issue :
1456-1469
Database :
Directory of Open Access Journals
Journal :
Journal of Materials Research and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.b8697acc895549c8a86bd142983c2579
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jmrt.2022.07.161