Back to Search Start Over

Deep Learning-Based Computer-Aided Detection System for Automated Treatment Response Assessment of Brain Metastases on 3D MRI

Authors :
Jungheum Cho
Young Jae Kim
Leonard Sunwoo
Gi Pyo Lee
Toan Quang Nguyen
Se Jin Cho
Sung Hyun Baik
Yun Jung Bae
Byung Se Choi
Cheolkyu Jung
Chul-Ho Sohn
Jung-Ho Han
Chae-Yong Kim
Kwang Gi Kim
Jae Hyoung Kim
Source :
Frontiers in Oncology, Vol 11 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

BackgroundAlthough accurate treatment response assessment for brain metastases (BMs) is crucial, it is highly labor intensive. This retrospective study aimed to develop a computer-aided detection (CAD) system for automated BM detection and treatment response evaluation using deep learning.MethodsWe included 214 consecutive MRI examinations of 147 patients with BM obtained between January 2015 and August 2016. These were divided into the training (174 MR images from 127 patients) and test datasets according to temporal separation (temporal test set #1; 40 MR images from 20 patients). For external validation, 24 patients with BM and 11 patients without BM from other institutions were included (geographic test set). In addition, we included 12 MRIs from BM patients obtained between August 2017 and March 2020 (temporal test set #2). Detection sensitivity, dice similarity coefficient (DSC) for segmentation, and agreements in one-dimensional and volumetric Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria between CAD and radiologists were assessed.ResultsIn the temporal test set #1, the sensitivity was 75.1% (95% confidence interval [CI]: 69.6%, 79.9%), mean DSC was 0.69 ± 0.22, and false-positive (FP) rate per scan was 0.8 for BM ≥ 5 mm. Agreements in the RANO-BM criteria were moderate (κ, 0.52) and substantial (κ, 0.68) for one-dimensional and volumetric, respectively. In the geographic test set, sensitivity was 87.7% (95% CI: 77.2%, 94.5%), mean DSC was 0.68 ± 0.20, and FP rate per scan was 1.9 for BM ≥ 5 mm. In the temporal test set #2, sensitivity was 94.7% (95% CI: 74.0%, 99.9%), mean DSC was 0.82 ± 0.20, and FP per scan was 0.5 (6/12) for BM ≥ 5 mm.ConclusionsOur CAD showed potential for automated treatment response assessment of BM ≥ 5 mm.

Details

Language :
English
ISSN :
2234943X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.b85137459aba47fca032ca470b8aeddb
Document Type :
article
Full Text :
https://doi.org/10.3389/fonc.2021.739639