Back to Search
Start Over
Millisecond flash lamp curing for porosity generation in thin films
- Source :
- Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Flash lamp annealing (FLA) with millisecond pulse durations is reported as a novel curing method for pore precursor's degradation in thin films. A case study on the curing of dielectric thin films is presented. FLA-cured films are being investigated by means of positron annihilation spectroscopy (PAS) and Fourier-transform infrared (FTIR) spectroscopy in order to quantify the nm-scale porosity and post-treatment chemistry, respectively. Results from positron annihilation reveal the onset of the formation of porous voids inside the samples at 6 ms flash treatment time. Moreover, parameter's adjustment (flash duration and energy density) allows for identifying the optimum conditions of effective curing. Within such a systematic investigation, positron results indicate that FLA is able to decompose the porogen (pore precursors) and to generate interconnected (open porosity) or isolated pore networks with self-sealed pores in a controllable way. Furthermore, FTIR results demonstrate the structural evolution after FLA, that help for setting the optimal annealing conditions whereby only a residual amount of porogen remains and at the same time a well-densified matrix, and a hydrophobic porous structures are created. Raman spectroscopy suggests that the curing-induced self-sealing layer developed at the film surface is a graphene oxide-like layer, which could serve as the outside sealing of the pore network from intrusions.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b84b7472069b4236bd9c2d901e33a21b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-023-34748-x