Back to Search Start Over

Reverse transcriptase-coupled quantitative real time PCR analysis of cell-free transcription on the chromatin-assembled p21 promoter.

Authors :
Jeong Hyeon Park
Natisha Magan
Source :
PLoS ONE, Vol 6, Iss 8, p e23617 (2011)
Publication Year :
2011
Publisher :
Public Library of Science (PLoS), 2011.

Abstract

BackgroundCell-free eukaryotic transcription assays have contributed tremendously to the current understanding of the molecular mechanisms that govern transcription at eukaryotic promoters. Currently, the conventional G-less cassette transcription assay is one of the simplest and fastest methods for measuring transcription in vitro. This method requires several components, including the radioisotope labelling of RNA product during the transcription reaction followed by visualization of transcripts using autoradiography.Methodology/principal findingsTo further simplify and expedite the conventional G-less cassette transcription assay, we have developed a method to incorporate a reverse transcriptase-coupled quantitative real time PCR (RT-qPCR). By using DNA template depletion steps that include DNA template immobilization, Trizol extraction and DNase I treatment, we have successfully enriched p21 promoter-driven transcripts over DNA templates. The quantification results of RNA transcripts using the RT-qPCR assay were comparable to the results of the conventional G-less cassette transcription assay both in naked DNA and chromatin-assembled templates.ConclusionsWe first report a proof-of-concept demonstration that incorporating RT-qPCR in cell-free transcription assays can be a simpler and faster alternative method to the conventional radioisotope-mediated transcription assays. This method will be useful for developing high throughput in vitro transcription assays and provide quantitative data for RNA transcripts generated in a defined cell-free transcription reaction.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
6
Issue :
8
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.b7d57572301b4f219c86c413d97745fa
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0023617