Back to Search Start Over

Biomechanical study of two-level oblique lumbar interbody fusion with different types of lateral instrumentation: a finite element analysis

Authors :
Yuan Zhong
Yujie Wang
Hong Zhou
Yudong Wang
Ziying Gan
Yimeng Qu
Runjia Hua
Zhaowei Chen
Genglei Chu
Yijie Liu
Weimin Jiang
Source :
Frontiers in Medicine, Vol 10 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

ObjectiveThe aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated with prolonged anesthesia and placement in the prone position.MethodsA three-dimensional nonlinear finite element (FE) model of an intact L1–L5 lumbar spine was constructed and validated. The intact model was modified to generate a two-level OLIF surgery model augmented with three types of lateral fixation (stand-alone, SA; lateral rod screw, LRS; miniature lateral plate, mini-LP); the operative segments were L2–L3 and L3–L4. By applying a 500 N follower load and 7.5 Nm directional moment (flexion-extension, lateral bending, and axial rotation), all models were used to simulate human spine movement. Then, we extracted the range of motion (ROM), peak contact force of the bony endplate (PCFBE), peak equivalent stress of the cage (PESC), peak equivalent stress of fixation (PESF), and stress contour plots.ResultsWhen compared with the intact model, the SA model achieved the least reduction in ROM to surgical segments in all motions. The ROM of the mini-LP model was slightly smaller than that of the LRS model. There were no significant differences in surgical segments (L1–L2, L4–L5) between all surgical models and the intact model. The PCFBE and PESC of the LRS and the mini-LP fixation models were lower than those of the SA model. However, the differences in PCFBE or PESC between the LRS- and mini-LP-based models were not significant. The fixation stress of the LRS- and mini-LP-based models was significantly lower than the yield strength under all loading conditions. In addition, the variances in the PESF in the LRS- and mini-LP-based models were not obvious.ConclusionOur biomechanical FE analysis indicated that LRS or mini-LP fixation can both provide adequate biomechanical stability for two-level OLIF through a single incision. The newly designed mini-LP model seemed to be superior in installation convenience, and equally good outcomes were achieved with both LRS and mini-LP for two-level OLIF.

Details

Language :
English
ISSN :
2296858X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.b7d38335f6754a8f8824c47c2c0fa543
Document Type :
article
Full Text :
https://doi.org/10.3389/fmed.2023.1183683