Back to Search Start Over

Photometric stereo data for the validation of a structural health monitoring test rig

Authors :
Jennifer Blair
Bruce Stephen
Blair Brown
Stephen McArthur
David Gorman
Alistair Forbes
Claire Pottier
Jack McAlorum
Hamish Dow
Marcus Perry
Source :
Data in Brief, Vol 53, Iss , Pp 110164- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Photometric stereo uses images of objects illuminated from various directions to calculate surface normals which can be used to generate 3D meshes of the object. Such meshes can be used by engineers to estimate damage of a concrete surface, or track damage progression over time to inform maintenance decisions. This dataset [1] was collected to quantify the uncertainty in a photometric stereo test rig through both the comparison with a well characterised method (coordinate measurement machine) and experiment virtualisation. Data was collected for 9 real objects using both the test rig and the coordinate measurement machine. These objects range from clay statues to damaged concrete slabs. Furthermore, synthetic data for 12 objects was created via virtual renders generated using Blender (3D software) [2]. The two methods of data generation allowed the decoupling of the physical rig (used to light and photograph objects) and the photometric stereo algorithm (used to convert images and lighting information into 3D meshes). This data can allow users to: test their own photometric stereo algorithms, with specialised data created for structural health monitoring applications; provide an industrially relevant case study to develop and test uncertainty quantification methods on test rigs for structural health monitoring of concrete; or develop data processing methodologies for the alignment of scaled, translated, and rotated data.

Details

Language :
English
ISSN :
23523409
Volume :
53
Issue :
110164-
Database :
Directory of Open Access Journals
Journal :
Data in Brief
Publication Type :
Academic Journal
Accession number :
edsdoj.b7aa4d7ff4b642d5b8d632b095adac02
Document Type :
article
Full Text :
https://doi.org/10.1016/j.dib.2024.110164