Back to Search Start Over

Enhanced multi-class pathology lesion detection in gastric neoplasms using deep learning-based approach and validation

Authors :
Byeong Soo Kim
Bokyung Kim
Minwoo Cho
Hyunsoo Chung
Ji Kon Ryu
Sungwan Kim
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract This study developed a new convolutional neural network model to detect and classify gastric lesions as malignant, premalignant, and benign. We used 10,181 white-light endoscopy images from 2606 patients in an 8:1:1 ratio. Lesions were categorized as early gastric cancer (EGC), advanced gastric cancer (AGC), gastric dysplasia, benign gastric ulcer (BGU), benign polyp, and benign erosion. We assessed the lesion detection and classification model using six-class, cancer versus non-cancer, and neoplasm versus non-neoplasm categories, as well as T-stage estimation in cancer lesions (T1, T2-T4). The lesion detection rate was 95.22% (219/230 patients) on a per-patient basis: 100% for EGC, 97.22% for AGC, 96.49% for dysplasia, 75.00% for BGU, 97.22% for benign polyps, and 80.49% for benign erosion. The six-class category exhibited an accuracy of 73.43%, sensitivity of 80.90%, specificity of 83.32%, positive predictive value (PPV) of 73.68%, and negative predictive value (NPV) of 88.53%. The sensitivity and NPV were 78.62% and 88.57% for the cancer versus non-cancer category, and 83.26% and 89.80% for the neoplasm versus non-neoplasm category, respectively. The T stage estimation model achieved an accuracy of 85.17%, sensitivity of 88.68%, specificity of 79.81%, PPV of 87.04%, and NPV of 82.18%. The novel CNN-based model remarkably detected and classified malignant, premalignant, and benign gastric lesions and accurately estimated gastric cancer T-stages.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b7a3a37879491482de286f004254bf
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-62494-1