Back to Search Start Over

Millimeter‐Scale Soft Continuum Robots for Large‐Angle and High‐Precision Manipulation by Hybrid Actuation

Authors :
Tieshan Zhang
Liu Yang
Xiong Yang
Rong Tan
Haojian Lu
Yajing Shen
Source :
Advanced Intelligent Systems, Vol 3, Iss 2, Pp n/a-n/a (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Developing small‐scale soft continuum robots with large‐angle steering capacity and high‐precision manipulation offers broad opportunities in various biomedical settings. However, existing continuum robots reach the bottleneck in actuation on account of the contradiction among small size, compliance actuation, large tender range, high precision, and small dynamic error. Herein, a 3D‐printed millimeter‐scale soft continuum robot with an ultrathin hollow skeleton wall (300 μm) and a large inner‐to‐outer ratio (0.8) is reported. After coating a thin ferromagnetic elastomer layer (≈100–150 μm), the proposed soft continuum robot equipped with hybrid actuation (tendon‐ and magnetic‐driven mode) achieves large‐angle (up to 100°) steering and high‐precision (low to 2 μm for static positioning) micromanipulation simultaneously. Specifically, the robot implements an ultralow dynamic tracking error of ≈10 μm, which is ≈30‐fold improved than the state of art. Combined with a microneedle/knife or nasopharyngeal swab, the robot reveals the potential for versatile biomedical applications, such as drug injection on the target tissue, diseased tissue ablation, and COVID‐19 nasopharyngeal sampling. The proposed millimeter‐scale soft continuum robot presents remarkable advances in large‐range and high‐precise actuation, which provides a new method for miniature continuum robot design and finds broad applications in biomedical engineering.

Details

Language :
English
ISSN :
26404567
Volume :
3
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Advanced Intelligent Systems
Publication Type :
Academic Journal
Accession number :
edsdoj.b78d7a8b59041409b8a20243198b2c0
Document Type :
article
Full Text :
https://doi.org/10.1002/aisy.202000189