Back to Search Start Over

Deoxycholic acid exacerbates intestinal inflammation by modulating interleukin-1β expression and tuft cell proportion in dextran sulfate sodium-induced murine colitis

Authors :
Jingyi Ju
Cui Zhang
Jiaolan Yang
Qinglu Yang
Pengyun Yin
Xiaomin Sun
Source :
PeerJ, Vol 11, p e14842 (2023)
Publication Year :
2023
Publisher :
PeerJ Inc., 2023.

Abstract

Background The etiology of inflammatory bowel disease (IBD) remains unclear. However, intestinal metabolism is known to be critical in the pathogenesis of IBD. Bile acid is one of the main intestinal metabolites, and its role in the pathogenesis of IBD is worthy of investigation. This study investigated the role of deoxycholic acid (DCA), a bile acid, in the pathogenesis of IBD. Methods Peripheral serum metabolomics, fecal metabolomics, and microbiome analyses were performed on patients with IBD and healthy controls. Flow cytometry, real-time quantitative polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, immunohistochemical staining, and immunofluorescence analysis were used to evaluate cytokines in the inflamed colonic mucosa and immune cells and tuft cells in the intestine of mice with dextran sulfate sodium (DSS)-induced colitis. Results In total, 156 patients with IBD and 58 healthy controls were enrolled. DCA levels in the serum and feces of patients with IBD were significantly decreased compared to the controls. This decrease was associated with a decrease in the abundance of intestinal flora, including Firmicutes, Clostridia, Ruminnococcaceae, and Lachnospiraceae. Additionally, interleukin (IL)-1β levels in the serum of patients with active Crohn’s disease were significantly increased compared with the healthy controls. Moreover, in DCA-treated DSS-induced mice, the expression of IL-1β and the proportion of CD3+ and CD4+ T cells increased while the number of intestinal tuft cells decreased, compared with the DSS group. Conclusion In IBD patients, the decreased DCA levels in serum and fecal samples are associated with disturbances in gut microflora diversity and abundance. Possible mechanisms by which DCA affects immunity in DSS-induced murine colitis include increasing IL-1β secretion, reducing the number of tuft cells in the mucosa, and activating CD4+ and CD3+ T cells to exaggerate immune responses, consequently worsening intestinal inflammation.

Details

Language :
English
ISSN :
21678359
Volume :
11
Database :
Directory of Open Access Journals
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
edsdoj.b787a29d765346c1a9ce2c97f0b8ebbf
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj.14842