Back to Search
Start Over
Elimination of tumor hypoxia by eribulin demonstrated by 18F-FMISO hypoxia imaging in human tumor xenograft models
- Source :
- EJNMMI Research, Vol 9, Iss 1, Pp 1-10 (2019)
- Publication Year :
- 2019
- Publisher :
- SpringerOpen, 2019.
-
Abstract
- Abstract Background Eribulin, an inhibitor of microtubule dynamics, shows antitumor potency against a variety of solid cancers through its antivascular activity and remodeling of tumor vasculature. 18F-Fluoromisonidazole (18F-FMISO) is the most widely used PET probe for imaging tumor hypoxia. In this study, we utilized 18F-FMISO to clarify the effects of eribulin on the tumor hypoxic condition in comparison with histological findings. Material and methods Mice bearing a human cancer cell xenograft were intraperitoneally administered a single dose of eribulin (0.3 or 1.0 mg/kg) or saline. Three days after the treatment, mice were injected with 18F-FMISO and pimonidazole (hypoxia marker for immunohistochemistry), and intertumoral 18F-FMISO accumulation levels and histological characteristics were determined. PET/CT was performed pre- and post-treatment with eribulin (0.3 mg/kg, i.p.). Results The 18F-FMISO accumulation levels and percent pimonidazole-positive hypoxic area were significantly lower, whereas the number of microvessels was higher in the tumors treated with eribulin. The PET/CT confirmed that 18F-FMISO distribution in the tumor was decreased after the eribulin treatment. Conclusions Using 18F-FMISO, we demonstrated the elimination of the tumor hypoxic condition by eribulin treatment, concomitantly with the increase in microvessel density. These findings indicate that PET imaging using 18F-FMISO may provide the possibility to detect the early treatment response in clinical patients undergoing eribulin treatment.
Details
- Language :
- English
- ISSN :
- 2191219X
- Volume :
- 9
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- EJNMMI Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b74e7ab1c0f64512b58ee9c9b4135a0b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13550-019-0521-x