Back to Search Start Over

A novel constraint-based structure learning algorithm using marginal causal prior knowledge

Authors :
Yifan Yu
Lei Hou
Xinhui Liu
Sijia Wu
Hongkai Li
Fuzhong Xue
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Causal discovery with prior knowledge is important for improving performance. We consider the incorporation of marginal causal relations, which correspond to the presence or absence of directed paths in a causal model. We propose the Marginal Prior Causal Knowledge PC (MPPC) algorithm to incorporate marginal causal relations into a constraint-based structure learning algorithm. We provide the theorems of conditional independence properties by combining observational data and marginal causal relations. We compare the MPPC algorithm with other structure learning methods in both simulation studies and real-world networks. The results indicate that, compare with other constraint-based structure learning methods, MPPC algorithm can incorporate marginal causal relations and is more effective and more efficient.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b6f3a6526874297aede7d1ed884e990
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-68379-7