Back to Search Start Over

Soil and foliar selenium application: Impact on accumulation, speciation, and bioaccessibility of selenium in wheat (Triticum aestivum L.)

Authors :
Min Wang
Fei Zhou
Nan Cheng
Ping Chen
Yuanzhe Ma
Hui Zhai
Mingxing Qi
Nana Liu
Yang Liu
Li Meng
Gary S. Bañuelos
Dongli Liang
Source :
Frontiers in Plant Science, Vol 13 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg–1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87–96%) and selenocystine (SeCys2; 4–13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg–1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg–1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12–68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L–1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.

Details

Language :
English
ISSN :
1664462X
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.b6f17b38a0ef4ff081d5cc0dad89de47
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2022.988627