Back to Search
Start Over
Identification of metabolic biomarkers in idiopathic pulmonary arterial hypertension using targeted metabolomics and bioinformatics analysis
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Pulmonary arterial hypertension (PAH) is a life-threatening disease with a poor prognosis, and metabolic abnormalities play a critical role in its development. This study used metabolomics, machine learning algorithms and bioinformatics to screen for potential metabolic biomarkers associated with the diagnosis of PAH. In this study, plasma samples were collected from 17 patients diagnosed with idiopathic pulmonary arterial hypertension (IPAH) and 20 healthy controls. Plasma metabolomic profiling was performed by high-performance liquid chromatography-mass spectrometry. Gene profiles of PAH patients were obtained from the GEO database. Key differentially expressed metabolites (DEMs) and metabolism-related genes were subsequently identified using machine learning algorithms. Twenty differential plasma metabolites associated with IPAH were identified (VIP score > 1 and p
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b6975125b6f447b4954d2b04952bccd7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-76514-7