Back to Search
Start Over
Acidity-activatable dynamic hybrid nanoplatforms derived from extracellular vesicles of M1 macrophages enhance cancer immunotherapy through synergistic triple immunotherapy
- Source :
- Journal of Nanobiotechnology, Vol 22, Iss 1, Pp 1-20 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Immunotherapy exhibits considerable promise for sustained tumor reduction. However, current cancer immunotherapy methods elicit limited responses due to the inadequate immunogenicity exhibited by cancer cells. This obstacle may be addressed using nanoplatforms that can activate synergistic therapies (photodynamic therapy and ferroptosis) in response to the acidic pH of the tumor microenvironment. We previously developed an amphiphilic photosensitizer, SR780, which displays satisfactory photodynamic effects. This photosensitizer is inactivated when bound to Fe3+ (SR780Fe) but is activated upon release in mildly acidic conditions. In this study, M1 macrophage-derived extracellular vesicles (EVs) were fused with REV and SR780Feāloaded liposomes (REV@SR780Fe@Lip) to form REV@SR780Fe@LEV hybrid nanovesicles. Further modification with the RS17 peptide for tumor targeting enabled a combination of photodynamic therapy, ferroptosis, and cGAS-STING pathway activation, resulting in enhanced antitumor efficacy through a synergistic effect. Upon laser irradiation, REV@SR780Fe@LEV-RS17 demonstrated antitumor effects in 4T1 breast cancer models, including the inhibition of lung and liver metastasis, as well as prevention of tumor recurrence. Graphical Abstract
Details
- Language :
- English
- ISSN :
- 14773155
- Volume :
- 22
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Nanobiotechnology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b67a7051570a4a809c27acd175d970b3
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12951-024-02719-7