Back to Search
Start Over
New Zampanolide Mimics: Design, Synthesis, and Antiproliferative Evaluation
- Source :
- Molecules, Vol 25, Iss 2, p 362 (2020)
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Zampanolide is a promising microtubule-stabilizing agent (MSA) with a unique chemical structure. It is superior to the current clinically used MSAs due to the covalent nature of its binding to β-tubulin and high cytotoxic potency toward multidrug-resistant cancer cells. However, its further development as a viable drug candidate is hindered by its limited availability. More importantly, conversion of its chemically fragile side chain into a stabilized bioisostere is envisioned to enable zampanolide to possess more drug-like properties. As part of our ongoing project aiming to develop its mimics with a stable side chain using straightforward synthetic approaches, 2-fluorobenzyl alcohol was designed as a bioisosteric surrogate for the side chain based on its binding conformation as confirmed by the X-ray structure of tubulin complexed with zampanolide. Two new zampanolide mimics with the newly designed side chain have been successfully synthesized through a 25-step chemical transformation for each. Yamaguchi esterification and intramolecular Horner−Wadsworth−Emmons condensation were used as key reactions to construct the lactone core. The chiral centers at C17 and C18 were introduced by the Sharpless asymmetric dihydroxylation. Our WST-1 cell proliferation assay data in both docetaxel-resistant and docetaxel-naive prostate cancer cell lines revealed that compound 6 is the optimal mimic and the newly designed side chain can serve as a bioisostere for the chemically fragile N-acetyl hemiaminal side chain in zampanolide.
- Subjects :
- natural product
anticancer agent
synthesis
zampanolide
Organic chemistry
QD241-441
Subjects
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 25
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b64621ec75514e7fa1d123239d6f6caa
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules25020362