Back to Search Start Over

Intranasal immunization with avian paramyxovirus type 3 expressing SARS-CoV-2 spike protein protects hamsters against SARS-CoV-2

Authors :
Hong-Su Park
Yumiko Matsuoka
Cindy Luongo
Lijuan Yang
Celia Santos
Xueqiao Liu
Laura R. H. Ahlers
Ian N. Moore
Sharmin Afroz
Reed F. Johnson
Bernard A. P. Lafont
David W. Dorward
Elizabeth R. Fischer
Craig Martens
Siba K. Samal
Shirin Munir
Ursula J. Buchholz
Cyril Le Nouën
Source :
npj Vaccines, Vol 7, Iss 1, Pp 1-15 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.

Details

Language :
English
ISSN :
20590105
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Vaccines
Publication Type :
Academic Journal
Accession number :
edsdoj.b63359b706ef44b6802329d81a42cb7c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41541-022-00493-x