Back to Search
Start Over
A Review of in vivo Toxicity of Quantum Dots in Animal Models
- Source :
- International Journal of Nanomedicine, Vol Volume 18, Pp 8143-8168 (2023)
- Publication Year :
- 2023
- Publisher :
- Dove Medical Press, 2023.
-
Abstract
- Xiaotan Lin,1,2 Tingting Chen1 1School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China; 2Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of ChinaCorrespondence: Tingting Chen, School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China, Email jkf_ctt@163.comAbstract: Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic. Keywords: quantum dots, nanotoxicology, nanoparticle, toxicity, cytotoxic
- Subjects :
- quantum dots
nanotoxicology
nanoparticle
toxicity
cytotoxic
Medicine (General)
R5-920
Subjects
Details
- Language :
- English
- ISSN :
- 11782013
- Volume :
- ume 18
- Database :
- Directory of Open Access Journals
- Journal :
- International Journal of Nanomedicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b626908fa312444e99a2c294a313d749
- Document Type :
- article