Back to Search Start Over

Machine learning approaches demonstrate that protein structures carry information about their genetic coding

Authors :
Linor Ackerman-Schraier
Aviv A. Rosenberg
Ailie Marx
Alex M. Bronstein
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Synonymous codons translate into the same amino acid. Although the identity of synonymous codons is often considered inconsequential to the final protein structure, there is mounting evidence for an association between the two. Our study examined this association using regression and classification models, finding that codon sequences predict protein backbone dihedral angles with a lower error than amino acid sequences, and that models trained with true dihedral angles have better classification of synonymous codons given structural information than models trained with random dihedral angles. Using this classification approach, we investigated local codon–codon dependencies and tested whether synonymous codon identity can be predicted more accurately from codon context than amino acid context alone, and most specifically which codon context position carries the most predictive power.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b5f96c3086f84951be1c2f54bfcd4d25
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-25874-z