Back to Search Start Over

Charge-Coupled Frequency Response Multispectral Inversion Network-Based Detection Method of Oil Contamination on Airport Runway

Authors :
Shuanfeng Zhao
Zhijian Luo
Li Wang
Xiaoyu Li
Zhizhong Xing
Source :
Sensors, Vol 24, Iss 12, p 3716 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Aircraft failures can result in the leakage of fuel, hydraulic oil, or other lubricants onto the runway during landing or taxiing. Damage to fuel tanks or oil lines during hard landings or accidents can also contribute to these spills. Further, improper maintenance or operational errors may leave oil traces on the runway before take-off or after landing. Identifying oil spills in airport runway videos is crucial to flight safety and accident investigation. Advanced image processing techniques can overcome the limitations of conventional RGB-based detection, which struggles to differentiate between oil spills and sewage due to similar coloration; given that oil and sewage have distinct spectral absorption patterns, precise detection can be performed based on multispectral images. In this study, we developed a method for spectrally enhancing RGB images of oil spills on airport runways to generate HSI images, facilitating oil spill detection in conventional RGB imagery. To this end, we employed the MST++ spectral reconstruction network model to effectively reconstruct RGB images into multispectral images, yielding improved accuracy in oil detection compared with other models. Additionally, we utilized the Fast R-CNN oil spill detection model, resulting in a 5% increase in Intersection over Union (IOU) for HSI images. Moreover, compared with RGB images, this approach significantly enhanced detection accuracy and completeness by 25.3% and 26.5%, respectively. These findings clearly demonstrate the superior precision and accuracy of HSI images based on spectral reconstruction in oil spill detection compared with traditional RGB images. With the spectral reconstruction technique, we can effectively make use of the spectral information inherent in oil spills, thereby enhancing detection accuracy. Future research could delve deeper into optimization techniques and conduct extensive validation in real airport environments. In conclusion, this spectral reconstruction-based technique for detecting oil spills on airport runways offers a novel and efficient approach that upholds both efficacy and accuracy. Its wide-scale implementation in airport operations holds great potential for improving aviation safety and environmental protection.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.b5abd45f3f0e472fb0bb7089cd2cb34b
Document Type :
article
Full Text :
https://doi.org/10.3390/s24123716