Back to Search Start Over

GP73 represses host innate immune response to promote virus replication by facilitating MAVS and TRAF6 degradation.

Authors :
Xuewu Zhang
Chengliang Zhu
Tianci Wang
Hui Jiang
Yahui Ren
Qi Zhang
Kailang Wu
Fang Liu
Yingle Liu
Jianguo Wu
Source :
PLoS Pathogens, Vol 13, Iss 4, p e1006321 (2017)
Publication Year :
2017
Publisher :
Public Library of Science (PLoS), 2017.

Abstract

Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) and Golgi protein 73 (GP73) is a serum biomarker for liver diseases and HCC. However, the mechanism underlying GP73 regulates HCV infection is largely unknown. Here, we revealed that GP73 acts as a novel negative regulator of host innate immunity to facilitate HCV infection. GP73 expression is activated and correlated with interferon-beta (IFN-β) production during HCV infection in patients' serum, primary human hepatocytes (PHHs) and human hepatoma cells through mitochondrial antiviral signaling protein (MAVS), TNF receptor-associated factor 6 (TRAF6) and mitogen-activated protein kinase kinase/extracellular regulated protein kinase (MEK/ERK) pathway. Detailed studies revealed that HCV infection activates MAVS that in turn recruits TRAF6 via TRAF-interacting-motifs (TIMs), and TRAF6 subsequently directly recruits GP73 to MAVS via coiled-coil domain. After binding with MAVS and TRAF6, GP73 promotes MAVS and TRAF6 degradation through proteasome-dependent pathway. Moreover, GP73 attenuates IFN-β promoter, IFN-stimulated response element (ISRE) and nuclear factor κB (NF-κB) promoter and down-regulates IFN-β, IFN-λ1, interleukin-6 (IL-6) and IFN-stimulated gene 56 (ISG56), leading to the repression of host innate immunity. Finally, knock-down of GP73 down-regulates HCV infection and replication in Huh7-MAVSR cells and primary human hepatocytes (PHHs), but such repression is rescued by GP73m4 (a mutant GP73 resists to GP73-shRNA#4) in Huh7-MAVSR cells, suggesting that GP73 facilitates HCV infection. Taken together, we demonstrated that GP73 acts as a negative regulator of innate immunity to facilitate HCV infection by interacting with MAVS/TRAF6 and promoting MAVS/TRAF6 degradation. This study provides new insights into the mechanism of HCV infection and pathogenesis, and suggests that GP73 is a new potential antiviral target in the prevention and treatment of HCV associated diseases.

Details

Language :
English
ISSN :
15537366 and 15537374
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
edsdoj.b5a640908626463f9dfa1c985b6ade7c
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.ppat.1006321