Back to Search
Start Over
Chamberless Healing for Small-scale Production of Grafted Tomato Transplants
- Source :
- HortTechnology, Vol 31, Iss 1, Pp 115-124 (2020)
- Publication Year :
- 2020
- Publisher :
- American Society for Horticultural Science (ASHS), 2020.
-
Abstract
- Interest is growing among small-scale growers in grafting tomato (Solanum lycopersicum) for improved crop productivity. Healing of newly grafted plants is often considered to be a critical process requiring a highly controlled environment. Setting up healing chambers and managing healing conditions can be major challenges for small-scale producers that limit graft survival and discourage further attempts at using grafting technology. Here, we demonstrate a simple “chamberless healing” strategy for grafted tomato plants using regular indoor conditions without the need to install and manage a sophisticated healing chamber. We hypothesize that tomato can form a high-quality graft in a healing environment with relative humidity below 70% and ambient temperatures between 22 and 25 °C. ‘Tribute’ beefsteak tomato as the scion was grafted onto ‘Estamino’ rootstock in the 2018 experiment, whereas ‘Multifort’ and ‘Shield RZ F1 (61-802)’ were used as the rootstocks in the 2019 experiment. After grafting, the seedlings for the chamberless healing treatment were kept in uncovered seedling trays and misted with water two or three times per day. Seedlings in other treatments were placed in a humidity dome or wrapped chamber to maintain high humidity during the first few days after grafting. In the 2018 experiment, chamberless healing was compared with covered treatments with different ventilation times during the first few days after grafting. In the 2019 experiment, chamberless healing was compared with a standard graft healing chamber treatment to further validate its feasibility. In both 2018 and 2019, all treatments showed high graft survival rates (>85%) at 21 days after grafting (DAG), and plants from the chamberless healing treatment had a lower incidence of adventitious root growth than plants from other healing treatments (0% to 7% vs. 33% to 78%). In the 2019 experiment, no differences in graft union strength, photosynthetic rate, biomass accumulation, or flowering time were observed between the chamberless and standard healing treatments. Plants with chamberless healing were slightly (8%) shorter than the standard treatment at 21 DAG, but no difference was observed at 27 DAG. Although some additional management is required during healing to prevent water loss, the alternative chamberless system assessed in this study exhibited great potential to facilitate small-scale graft healing for producing grafted tomato transplants under standard indoor conditions without any sophisticated healing environment and management.
Details
- Language :
- English
- ISSN :
- 19437714
- Volume :
- 31
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- HortTechnology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b56d114d9d59440a9d760f1b47b78e7e
- Document Type :
- article
- Full Text :
- https://doi.org/10.21273/HORTTECH04707-20