Back to Search
Start Over
Coordinated studies of the geospace environment using Cluster, satellite and ground-based data: an interim review
- Source :
- Annales Geophysicae, Vol 23, Pp 2129-2170 (2005)
- Publication Year :
- 2005
- Publisher :
- Copernicus Publications, 2005.
-
Abstract
- A little more than four years after its launch, the first magnetospheric, multi-satellite mission Cluster has already tremendously contributed to our understanding about the coupled solar wind - magnetosphere - ionosphere system. This is mostly due to its ability, for the first time, to provide instantaneous spatial views of structures in the system, to separate temporal and spatial variations, and to derive velocities and directions of moving structures. Ground-based data have an important complementary impact on Cluster-related research, as they provide a larger-scale context to put the spacecraft data in, allow to virtually enlarge the spacecrafts' field of view, and make it possible to study in detail the coupling between the magnetosphere and the ionosphere in a spatially extended domain. With this paper we present an interim review of cooperative research done with Cluster and ground-based instruments, including the support of other space-based data. We first give a short overview of the instrumentation used, and present some specific data analysis and modeling techniques that have been devised for the combined analysis of Cluster and ground-based data. Then we review highlighted results of the research using Cluster and ground-based data, ordered into dayside and nightside processes. Such highlights include, for example, the identification of the spatio-temporal signatures of the different modes of reconnection on the dayside, and the detailed analysis of the electrodynamic magnetosphere-ionosphere coupling of bursty bulk flows in the tail plasma sheet on the nightside. The aim of this paper is to provide a "sourcebook" for the Cluster and ground-based community that summarises the work that has been done in this field of research, and to identify open questions and possible directions for future studies. Keywords. Ionosphere (Auroral ionosphere) – Magnetospheric physics (Magnetosphere-ionosphere interactions; General or miscellanous)
- Subjects :
- Science
Physics
QC1-999
Geophysics. Cosmic physics
QC801-809
Subjects
Details
- Language :
- English
- ISSN :
- 09927689 and 14320576
- Volume :
- 23
- Database :
- Directory of Open Access Journals
- Journal :
- Annales Geophysicae
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b56a132ebcb4402096e02d861729c223
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/angeo-23-2129-2005