Back to Search Start Over

Robust high-dimensional memory-augmented neural networks

Authors :
Geethan Karunaratne
Manuel Schmuck
Manuel Le Gallo
Giovanni Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

The implementation of memory-augmented neural networks using conventional computer architectures is challenging due to a large number of read and write operations. Here, Karunaratne, Schmuck et al. propose an architecture that enables analog in-memory computing on high-dimensional vectors at accuracy matching 32-bit software equivalent.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.b553751b28d34003af781f5a72f0719a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-021-22364-0