Back to Search Start Over

Functional Genetic Diversity and Plant Growth Promoting Potential of Polyphosphate Accumulating Bacteria in Soil

Authors :
Sonal Srivastava
Vandana Anand
Jasvinder Kaur
Manish Ranjan
Vidisha Bist
Mehar Hasan Asif
Suchi Srivastava
Source :
Microbiology Spectrum, Vol 10, Iss 1 (2022)
Publication Year :
2022
Publisher :
American Society for Microbiology, 2022.

Abstract

ABSTRACT Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.

Details

Language :
English
ISSN :
21650497
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbiology Spectrum
Publication Type :
Academic Journal
Accession number :
edsdoj.b5024a963dbb43d3a7dc529df32154fa
Document Type :
article
Full Text :
https://doi.org/10.1128/spectrum.00345-21