Back to Search Start Over

β2AR-HIF-1α-CXCL12 signaling of osteoblasts activated by isoproterenol promotes migration and invasion of prostate cancer cells

Authors :
Zhibin Huang
Guihuan Li
Zhishuai Zhang
Ruonan Gu
Wenyang Wang
Xiaoju Lai
Zhong-Kai Cui
Fangyin Zeng
Shiyuan Xu
Fan Deng
Source :
BMC Cancer, Vol 19, Iss 1, Pp 1-15 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background Chronic stress is well known to promote tumor progression, however, little is known whether chronic stress-mediated regulation of osteoblasts contributes to the migration and invasion of metastatic cancer cells. Methods The proliferation, migration and invasion of prostate cancer cells were assessed by CCK-8 and transwell assay. HIF-1α expression of osteoblasts and epithelial-mesenchymal transition (EMT) markers of prostate cancer cells were examined by Western blot. The mRNA level of cytokines associated with bone metastasis in osteoblasts and EMT markers in PC-3 and DU145 cells were performed by qRT-PCR. Functional rescue experiment of cells were performed by using siRNA, plasmid transfection and inhibitor treatment. Results Isoproterenol (ISO), a pharmacological surrogate of sympathetic nerve activation induced by chronic stress, exhibited no direct effect on migration and invasion of PC-3 and DU145 prostate cancer cells. Whereas, osteoblasts pretreated with ISO promoted EMT, migration and invasion of PC-3 and DU145 cells, which could be inhibited by β2AR inhibitor. Mechanistically, ISO increased the secretion of CXCL12 via the β2AR-HIF-1α signaling in osteoblasts. Moreover, overexpression of HIF-1α osteoblasts promoted migration and invasion of PC-3 and DU145 cells, which was inhibited by addition of recombinant knockdown of CXCR4 in PC-3 and DU145 cells, and inhibiting CXCL12-CXCR4 signaling with LY2510924 blunted the effects of osteoblasts in response to ISO on EMT and migration as well as invasion of PC-3 and DU145 cells. Conclusions These findings demonstrated that β2AR-HIF-1α-CXCL12 signaling in osteoblasts facilitates migration and invasion as well as EMT of prostate cancer cells, and may play a potential role in affecting bone metastasis of prostate cancer.

Details

Language :
English
ISSN :
14712407
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Cancer
Publication Type :
Academic Journal
Accession number :
edsdoj.b4fec953feb34f6fb4e233edcaa81edf
Document Type :
article
Full Text :
https://doi.org/10.1186/s12885-019-6301-1