Back to Search Start Over

Expansive data, extensive model: Investigating discussion topics around LLM through unsupervised machine learning in academic papers and news.

Authors :
Hae Sun Jung
Haein Lee
Young Seok Woo
Seo Yeon Baek
Jang Hyun Kim
Source :
PLoS ONE, Vol 19, Iss 5, p e0304680 (2024)
Publication Year :
2024
Publisher :
Public Library of Science (PLoS), 2024.

Abstract

This study presents a comprehensive exploration of topic modeling methods tailored for large language model (LLM) using data obtained from Web of Science and LexisNexis from June 1, 2020, to December 31, 2023. The data collection process involved queries focusing on LLMs, including "Large language model," "LLM," and "ChatGPT." Various topic modeling approaches were evaluated based on performance metrics, including diversity and coherence. latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), combined topic models (CTM), and bidirectional encoder representations from Transformers topic (BERTopic) were employed for performance evaluation. Evaluation metrics were computed across platforms, with BERTopic demonstrating superior performance in diversity and coherence across both LexisNexis and Web of Science. The experiment result reveals that news articles maintain a balanced coverage across various topics and mainly focus on efforts to utilize LLM in specialized domains. Conversely, research papers are more concise and concentrated on the technology itself, emphasizing technical aspects. Through the insights gained in this study, it becomes possible to investigate the future path and the challenges that LLMs should tackle. Additionally, they could offer considerable value to enterprises that utilize LLMs to deliver services.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
19
Issue :
5
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.b4feb6fe9524c0e8fb48a0f91e49575
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0304680