Back to Search Start Over

Effect of lignin in cellulose nanofibers on biodegradation and seed germination

Authors :
Craig W. Stocker
Vanessa N. L. Wong
Antonio F. Patti
Gil Garnier
Source :
Chemical and Biological Technologies in Agriculture, Vol 11, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
SpringerOpen, 2024.

Abstract

Abstract Pure cellulose nanofibers (CNFs) rapidly degrade in soil, limiting their prospective applications in agriculture. We incorporated lignin into CNFs as an antimicrobial and crosslinking agent to control the biodegradation rate. CNFs with different lignin concentrations were prepared by mechanochemical treatment in the presence of choline chloride-urea deep eutectic solvent. These were characterized using conductometric titration, scanning electron microscopy, and FT-IR. The fibers were applied to soil to determine the effect of lignin on soil respiration and nanocellulose degradation, and were used as a substrate for radish and cress seed germination. Modifying the lignin content of the fibers successfully modulated the biodegradation rate in soil. Fibers containing 35% lignin degraded 5.7% in 14 days, while fibers with 20% lignin degraded 20.8% in 14 days. Nanofiber suspensions showed low chemical inhibition for the germination of radish and cress seeds but higher lignin contents reduced the imbibition rate as a seed coating. This study presents the first use of lignin to control the biodegradation rate of cellulose nanofibers in a one-pot, scalable and sustainable system, allowing the advancement of lignocellulose nanofibers for applications such as seed coatings, mulches, and controlled release fertilizers. Graphical Abstract

Details

Language :
English
ISSN :
21965641
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Chemical and Biological Technologies in Agriculture
Publication Type :
Academic Journal
Accession number :
edsdoj.b4e11ef25fc34ce2a09ecfed8dc592c7
Document Type :
article
Full Text :
https://doi.org/10.1186/s40538-023-00528-y