Back to Search
Start Over
Measurement of Urinary Gc-Globulin by a Fluorescence ELISA Technique: Method Validation and Clinical Evaluation in Septic Patients—A Pilot Study
- Source :
- Molecules, Vol 28, Iss 19, p 6864 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- A major complication of sepsis is the development of acute kidney injury (AKI). In case of acute tubular damage, Gc-globulin, a known serum sepsis marker is increasingly filtrated into the urine therefore, urinary Gc-globulin (u-Gc) levels may predict septic AKI. We developed and validated a competitive fluorescence ELISA method for u-Gc measurement. Serum and urine samples from septic patients were collected in three consecutive days (T1, T2, T3) and data were compared to controls. Intra- and interassay imprecisions were CV < 14% and CV < 20%, respectively, with a recovery close to 100%. Controls and septic patients differed (p < 0.001) in their u-Gc/u-creatinine levels at admission (T1, median: 0.51 vs. 79.1 µg/mmol), T2 (median: 0.51 vs. 57.8 µg/mmol) and T3 (median: 0.51 vs. 55.6 µg/mmol). Septic patients with AKI expressed higher u-Gc/u-creatinine values than those without AKI at T1 (median: 23.6 vs. 136.5 µg/mmol, p < 0.01) and T3 (median: 34.4 vs. 75.8 µg/mmol, p < 0.05). AKI-2 stage patients exhibited more increased u-Gc/u-creatinine levels at T1 (median: 207.1 vs. 53.3 µg/mmol, p < 0.05) than AKI-1 stage individuals. Moderate correlations (p < 0.001) were observed between u-Gc/u-creatinine and se-urea, se-creatinine, se-hsCRP, WBC, u-total protein, u-albumin, u-orosomucoid/u-creatinine, and u-Cystatin C/u-creatinine levels. U-Gc testing may have a predictive value for AKI in septic patients.
Details
- Language :
- English
- ISSN :
- 28196864 and 14203049
- Volume :
- 28
- Issue :
- 19
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b4e11ed089bb41dc9dc00e08df2b0b19
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules28196864