Back to Search Start Over

Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T

Authors :
Radim Kořínek
Lorenz Pfleger
Korbinian Eckstein
Hannes Beiglböck
Simon Daniel Robinson
Michael Krebs
Siegfried Trattnig
Zenon Starčuk
Martin Krššák
Source :
Frontiers in Physics, Vol 9 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field. The purpose of the study is to evaluate the feasibility of PDFF imaging using a multi-echo CSE-MRI technique at ultra-high magnetic field (7Tesla). Thirteen volunteers (M/F) with a broad range of age, body mass index, and hepatic PDFF were measured at 3 and 7T by multi-gradient-echo MRI and single-voxel spectroscopy MRS. All measurements were performed in breath-hold (exhalation); the MRI protocols were optimized for a short measurement time, thus minimizing motion-related problems. 7T data were processed off-line using Matlab® (MRI:multi-gradient-echo) and jMRUI (MRS), respectively. For quantitative validation of the PDFF results, a similar protocol was performed at 3T, including on-line data processing provided by the system manufacturer, and correlation analyses between 7 and 3T data were performed off-line. The multi-echo CSE-MRI measurements at 7T with a phased-array coil configuration and an optimal post-processing yielded liver volume coverage ranging from 30 to 90% for high- and low-BMI subjects, respectively. PDFFs ranged between 1 and 20%. We found significant correlations between 7T MRI and -MRS measurements (R2 ≅ 0.97; p < 0.005), and between MRI-PDFF at 7T and 3T fields (R2 ≅ 0.94; p < 0.005) in the evaluated volumes. Based on the measurements and analyses performed, the multi-echo CSE-MRI method using a 32-channel coil at 7T showed its aptitude for MRI-based quantitation of PDFF in the investigated volumes. The results are the first step toward qMRI of the whole liver at 7T with further improvements in hardware.

Details

Language :
English
ISSN :
2296424X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.b4ad9d3a3260479cb65ef86d7885248c
Document Type :
article
Full Text :
https://doi.org/10.3389/fphy.2021.665562