Back to Search
Start Over
Metabolic Engineering to Improve Docosahexaenoic Acid Production in Marine Protist Aurantiochytrium sp. by Disrupting 2,4-Dienoyl-CoA Reductase
- Source :
- Frontiers in Marine Science, Vol 9 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- Docosahexaenoic acid (DHA) has attracted attention from researchers because of its pharmacological and nutritional importance. Currently, DHA production costs are high due to fermentation inefficiency; however, improving DHA yield by metabolic engineering in thraustochytrids is one approach to reduce these costs. In this study, a high-yielding (53.97% of total fatty acids) DHA production strain was constructed by disrupting polyunsaturated fatty acid beta-oxidation via knockout of the 2,4-dienyl-CoA reductase (DECR) gene (KO strain) in Aurantiochytrium sp. Slight differences in cell growth was observed in the wild-type and transformants (OE and KO), with cell concentrations in stationary of 2.65×106, 2.36×106 and 2.56×106 cells mL-1 respectively. Impressively, the KO strain yielded 21.62% more neutral lipids and 57.34% greater DHA production; moreover, the opposite was observed when overexpressing DECR (OE strain), with significant decreases of 30.49% and 64.61%, respectively. Furthermore, the KO strain showed a prolonged DHA production period with a sustainable increase from 63 to 90 h (170.03 to 203.27 mg g−1 DCW), while that of the wildtype strain decreased significantly from 150.58 to 140.10 mg g−1 DCW. This new approach provides an advanced proxy for the construction of sustainable DHA production strains for industrial purposes and deepens our understanding of the metabolic pathways of Aurantiochytrium sp.
Details
- Language :
- English
- ISSN :
- 22967745
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Marine Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b4aa433f04f4491a996e4aefdeada63c
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fmars.2022.939716