Back to Search
Start Over
Establishment of the microscope incubation system and its application in evaluating tumor treatment effects through real-time live cellular imaging
- Source :
- Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)
- Publication Year :
- 2024
- Publisher :
- Frontiers Media S.A., 2024.
-
Abstract
- Introduction: Long-term imaging of live cells is commonly used for the study of dynamic cell behaviors. It is crucial to keep the cell viability during the investigation of physiological and biological processes by live cell imaging. Conventional incubators that providing stable temperature, carbon dioxide (CO2) concentration, and humidity are often incompatible with most imaging tools. Available commercial or custom-made stage-top incubators are bulky or unable to provide constant environmental conditions during long time culture.Methods: In this study, we reported the development of the microscope incubation system (MIS) that can be easily adapted to any inverted microscope stage. Incremental PID control algorithm was introduced to keep stable temperature and gas concentration of the system. Moreover, efficient translucent materials were applied for the top and bottom of the incubator which make it possible for images taken during culture.Results: The MIS could support cell viability comparable to standard incubators. When used in real time imaging, the MIS was able to trace single cell migration in scratch assay, T cell mediated tumor cells killing in co-culture assay, inflation-collapse and fusion of organoids in 3D culture. And the viability and drug responses of cells cultured in the MIS were able to be calculated by a label-free methods based on long term imaging.Discussion: We offer new insights into monitoring cell behaviors during long term culture by using the stage adapted MIS. This study illustrates that the newly developed MIS is a viable solution for long-term imaging during in vitro cell culture and demonstrates its potential in cell biology, cancer biology and drug discovery research where long-term real-time recording is required.
Details
- Language :
- English
- ISSN :
- 22964185
- Volume :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Bioengineering and Biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b4a1af814f194a0dad631fcdc0a5bd62
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fbioe.2024.1447265