Back to Search Start Over

PIM1-Induced Cytoplasmic Expression of RBMY Mediates Hepatocellular Carcinoma MetastasisSummary

Authors :
Huey-Huey Chua
Mei-Hwei Chang
Ya-Hui Chen
Daw-Jen Tsuei
Yung-Ming Jeng
Po-Huang Lee
Yen-Hsuan Ni
Source :
Cellular and Molecular Gastroenterology and Hepatology, Vol 15, Iss 1, Pp 121-152 (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Background & Aims: Metastasis indicates a grave prognosis in patients with hepatocellular carcinoma (HCC). Our previous studies showed that RNA binding motif protein Y-linked (RBMY) is potentially a biomarker for poor survival in HCC patients, but its role in metastasis is largely unclear. Methods: A total of 308 male patients with primary HCC were enrolled. RBMY expression was traced longitudinally by immunostaining from the manifestation of a primary HCC tumor to the formation of a distant metastasis, and its upstream regulators were screened with a protein microarray. A series of metastasis assays in mouse models and HCC cell lines were performed to explore new functional insights into RBMY. Results: Cytoplasmic expression of RBMY was associated with rapid distant metastasis (approximately 1 year after resection) and had a predictive power of 82.4% for HCC metastasis. RBMY conferred high migratory and invasive potential upon phosphorylation by the provirus integration in Moloney 1 (PIM1) kinase. Binding of PIM1 to RBMY caused mutual stabilization and massive translocation of RBMY from nuclei to mitochondria, thereby preventing mitochondrial apoptosis and augmenting mitochondrial generation of adenosine triphosphate/reactive oxygen species to enhance cell motility. Depletion of RBMY suppressed Snail1/zinc finger E-box binding homeobox transcription factor 1–mediated epithelial–mesenchymal transition and dynamin-related protein 1–dependent mitochondrial fission. Inactivation and knockout of PIM1 down-regulated the expression of RBMY. In nude mice, cytoplasmic RBMY promoted liver-to-lung metastasis by increasing epithelial–mesenchymal transition, mitochondrial proliferation, and mitochondrial fission, whereas nuclear-restricted RBMY impeded the mitochondrial switch and failed to induce lung metastasis. Conclusions: This study showed the regulation of HCC metastasis by PIM1-driven cytoplasmic expression of RBMY and suggested a novel therapeutic target for attenuating metastasis.

Details

Language :
English
ISSN :
2352345X
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cellular and Molecular Gastroenterology and Hepatology
Publication Type :
Academic Journal
Accession number :
edsdoj.b4787e112e144172b784333c77889842
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jcmgh.2022.09.014