Back to Search Start Over

The crosstalking immune cells network creates a collective function beyond the function of each cellular constituent during the progression of hepatocellular carcinoma

Authors :
Nicholas Koelsch
Faridoddin Mirshahi
Hussein F. Aqbi
Mulugeta Saneshaw
Michael O. Idowu
Amy L. Olex
Arun J. Sanyal
Masoud H. Manjili
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-18 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Abundance of data on the role of inflammatory immune responses in the progression or inhibition of hepatocellular carcinoma (HCC) has failed to offer a curative immunotherapy for HCC. This is largely because of focusing on detailed specific cell types and missing the collective function of the hepatic immune system. To discover the collective immune function, we take systems immunology approach by performing high-throughput analysis of snRNAseq data collected from the liver of DIAMOND mice during the progression of nonalcoholic fatty liver disease (NAFLD) to HCC. We report that mutual signaling interactions of the hepatic immune cells in a dominant-subdominant manner, as well as their interaction with structural cells shape the immunological pattern manifesting a collective function beyond the function of the cellular constituents. Such pattern discovery approach recognized direct role of the innate immune cells in the progression of NASH and HCC. These data suggest that discovery of the immune pattern not only detects the immunological mechanism of HCC in spite of dynamic changes in immune cells during the course of disease but also offers immune modulatory interventions for the treatment of NAFLD and HCC.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b445faca8cc44241a8a690ae830ee44f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-39020-w