Back to Search
Start Over
Development of Biocompatible Ga2(HPO4)3 Nanoparticles as an Antimicrobial Agent with Improved Ga Resistance Development Profile against Pseudomonas aeruginosa
- Source :
- Antibiotics, Vol 12, Iss 11, p 1578 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Ga(III) can mimic Fe(III) in the biological system due to its similarities in charge and ionic radius to those of Fe(III) and can exhibit antimicrobial activity by disrupting the acquisition and metabolism of Fe in bacterial cells. For example, Ga(NO3)3 has been proven to be effective in treating chronic lung infections by Pseudomonas aeruginosa (P. aeruginosa) in cystic fibrosis patients in a recent phase II clinical trial. However, Ga(NO3)3 is an ionic compound that can hydrolyze to form insoluble hydroxides at physiological pH, which not only reduces its bioavailability but also causes potential renal toxicity when it is used as a systemic drug. Although complexion with suitable chelating agents has offered a varying degree of success in alleviating the hydrolysis of Ga(III), the use of nanotechnology to deliver this metallic ion should constitute an ultimate solution to all the above-mentioned problems. Thus far, the development of Ga-based nanomaterials as metalloantibiotics is an underexploited area of research. We have developed two different synthetic routes for the preparation of biocompatible Ga2(HPO4)3 NPs and shown that both the PVP- or PEG-coated Ga2(HPO4)3 NPs exhibit potent antimicrobial activity against P. aeruginosa. More importantly, such polymer-coated NPs do not show any sign of Ga-resistant phenotype development after 30 passes, in sharp contrast to Ga(NO3)3, which can rapidly develop Ga-resistant phenotypes of P. aeruginosa, indicating the potential of using Ga2(HPO4)3 NPs a new antimicrobial agent in place of Ga(NO3)3.
Details
- Language :
- English
- ISSN :
- 20796382
- Volume :
- 12
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Antibiotics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b43212bf3a7c4692a8eee6eccf318cbf
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/antibiotics12111578