Back to Search
Start Over
Improved Thermal Resistance and Electrical Conductivity of a Boron-Doped DLC Film Using RF-PECVD
- Source :
- Frontiers in Materials, Vol 7 (2020)
- Publication Year :
- 2020
- Publisher :
- Frontiers Media S.A., 2020.
-
Abstract
- Diamond-like carbon (DLC) film doped with boron has unique properties and displays higher thermal resistance, lower internal stress, and better electrical conductivity than un-doped DLC film; this makes it is suitable for various applications, especially in outer space. Radio-frequency plasma-enhanced chemical vacuum deposition of boron-doped DLC film was performed to determine the optimal percentage of boron for improving thermal resistance. Additional heat treatment and 40 vol% B2H6/CH4 yielded the best electrical conductivity. X-ray photoelectron spectroscopy, thermal gravimetric analysis, Raman spectroscopy, and the four-point probe method were utilized to analyze the properties of boron-doped DLC film. The boron-doped DLC film displayed outstanding performance in terms of thermal resistance and electrical conductivity.
- Subjects :
- DLC
boron-doped
RF-PECVD
thermal treatment
electrical resistance
Technology
Subjects
Details
- Language :
- English
- ISSN :
- 22968016
- Volume :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b4182fe92eda4be2a9852b0ee378378d
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fmats.2020.00201