Back to Search Start Over

Nano-Iron Oxide-Ethylene Glycol-Water Nanofluid Based Photovoltaic Thermal (PV/T) System with Spiral Flow Absorber: An Energy and Exergy Analysis

Authors :
Amged Al Ezzi
Miqdam T. Chaichan
Hasan S. Majdi
Ali H. A. Al-Waeli
Hussein A. Kazem
Kamaruzzaman Sopian
Mohammed A. Fayad
Hayder A. Dhahad
Talal Yusaf
Source :
Energies, Vol 15, Iss 11, p 3870 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.b40457890ae499883da837e47c60e0b
Document Type :
article
Full Text :
https://doi.org/10.3390/en15113870